

#### **Green Cars**

NCP Infoday - Objective GC-ICT-2011.6.8 ICT for Fully Electric Vehicles

Brussels, 23 June 2010

Cosmin Codrea

European Commission Directorate-General Information Society and Media Unit G2 Micro- and Nanosystems

Cosmin.CODREA@ec.europa.eu





### Objective 6.8: Green Car: ICT for the Fully Electric Vehicle

#### Where do we stand?

Where do we want to go and why?

- EV Gen1: conventional cars with electric drive kit = very low energy efficiency + CO2 emissions higher than optimised ICE cars
- limited driving range, extended charging time of the battery, reliability, proprietary solutions, high cost and overall limited efficiency

  2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 6 Global pure electric car sales 2009-2019

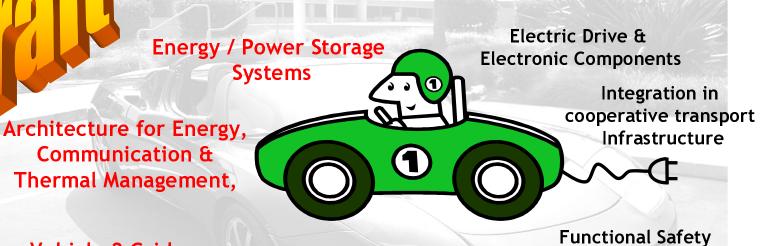
- Primary energy savings and GHG emissions cut
- Strengthened global competitiveness of the European automobile sector
- European standard reference platforms for EV design: architectures, models, methods, and tools
- Integration of the EV into energy and transport infrastructures
- Enhanced quality and reliability of European power electronics
  - Reinforced coordination of the research activities on FEV across Europe

# Closed 3 Nov 09 Budget 20 M€

# Results from the last call ICT-2010-10.3 ICT for the Fully Electric Vehicle

| Funding scheme | # received | # above<br>threshold | # retained /<br>reserve |
|----------------|------------|----------------------|-------------------------|
| STREP          | 12         | 6 (50%)              | 6/0                     |
| CSA            | 3          | 1 (33%)              | 1/0                     |
| Total          | 15         | 7 (47%)              | 7/0                     |

•Success rate: 1:2 (in terms of number of proposals & budget)


• Participations in retained proposals: 66% from industry (18% SMEs)



## Objective 6.8: Green Car: ICT for the Fully Electric Vehicle

**Target outcomes:** 

stakeholders like EGCI Ad-hoc Advisory Group, ERTRAC, EPoSS, eSafety Forum, SmartGrids ...



Vehicle 2 Grid Interface

Vehicle Stability
Control

CSA "FEV made in Europe"

**Call FP7-2011-ICT-GC 30M€ Streps** 

Call FP7-2012-ICT-GC 30M€ Streps / CSA

Closing 2 Dec

& durability

Closing 2 Dec

2011



#### a) Energy/Power Storage Systems

- Control system solutions for batteries and/or super-capacitors
  - Electronic architectures for managing optimal charging and discharging rates
  - Sensors and networking capabilities for monitoring and controlling the energy/power storage system's efficiency, lifetime, reliability and safety, including monitoring and early warning of fault conditions environmental monitoring, temperature conditioning and shock protection/spark avoidance
  - high voltage switches and interconnects and system interfaces







#### b) Architectures for Energy, Communication and Thermal Management

- Optimised distribution for multiple voltage systems for:
  - power-train, bilateral grid connection, onboard energy harvesting, heating and cooling conditioning systems, vehicle stability and comfort, lighting, driving assistance sensors, on board information and entertainment and other auxiliaries.
- Real-time and fail-safe standard communication systems





#### c) Vehicle-to-grid Interface (V2G)



- **Controlled flow of energy** 
  - safe, secure, energy efficient and convenient transfer of electricity and data
  - E/M compatibility, robustness, reliability, safety, security and impact on health and grid stability
- Platform-independent solutions based on pan-European consensus and conform to interface standards for Smart Grids.







#### d) Vehicle Stability Control

- Stability control architectures with 2, 3 or 4 electrical motors
- Vehicle dynamics simulation
- E/M compatibility
- Bus-based solutions
  - standardised, safe and redundant
- Regenerative breaking
- System faults like maximum torque / oscillating torque at a single wheel / two wheels
- Controlled shut-down procedures in case of a crash

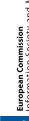






#### **Expected Impact**

- Improved energy efficiency and extended driving range
- Reduced costs of the electronic components and the overall FEV
- Mitigated constrains for the user of the FEV versus the ICE vehicle
- Seamless integration of the FEV into the smart grids and the existing infrastructure
- Significant improvement in terms of safety, comfort and new information and comfort services for FEV users
- Strengthened global competitiveness of the European automobile, ICT and battery sectors








#### **Future events**

- INFODAY EV in the UK 28 June
- INFODAY PPP 9 July in Brussels
- ICT 2010. BXL. 27 29 September. Presentation of the new WP 2011-2013.







#### **Contacts**

- Evaluation functional mailbox:
- INFSO-GREEN-CAR@ec.europa.eu
- INFSO G2:
  - Thomas.Reibe@ec.europa.eu
  - Cosmin.Codrea@ec.europa.eu
- INFSO G4:
  - Myriam.Coulon-Cantuer@ec.europa.eu











